Spritzgiessverfahren

Innendruck-Spritzgiessen

Innendruck-Spritzgiessen oder auch Fluidinjektionstechnik (FIT) ist ein spezia- lisiertes Spritzgussverfahren zur Herstellung hohler Werkstücke. Nach einem Arbeitsschritt des herkömmlichen Spritzgiessens bzw. nach einer definierter Teilfüllung der Gussform wird ein vorübergehender Füllstoff (Wasser oder iner-
tes Gas, in der Regel Stickstoff) so in eine teilgefüllte Form injiziert, dass es als inneres Formstück (Matrize) wirkt. Durch die Verdrängung der Schmelze aus der Mitte wächst zum einen ein Hohlraum und zum anderen wird die Schmelze an bzw. in die äussere Gussform gedrückt. Nach Erstarren der Schmelze entweicht das Fluid wieder.

Es ähnelt damit dem Sandwich-Verfahren beim Mehrkomponenten-Spritzgiessen.

Verfahren der Fluidinjektionstechnik

Gasinjektionstechnik:
Bei der Gasinjektionstechnik (GIT) oder auch Gasinnendruck-Spritzgiessen (GID) verdrängt das Gas die Schmelze und übernimmt mit Drücken bis maximal 300 bar die Restfüllung. Das Injizieren kann durch die Maschinendüse und damit durch das Angusssystem oder durch eine separate Injektionsnadel direkt in das Formteil in der Kavität erfolgen. Eine weitere Variante ist die vollständige Füllung der Kavität mit Schmelze und anschliessendem Ausblasen von Schmelze in eine Nebenkavität oder das Zurückblasen in den Schneckenzylinder.

Tendenziell bevorzugt man Gas immer dann, wenn Schwindung kompensiert werden soll, Masseanhäufungen nicht vermeidbar sind, Kanalquerschnitte sehr klein sind, Wasser nicht aus dem Bauteil entfernt werden kann oder die Baugrösse des Injektors ausschlaggebend ist.

Wasserinjektionstechnik
Das Wasserinjektionstechnik (WID), auch Wasserinnendruck-Spritzgiessen oder kurz WID genannt, ist prinzipiell gleich dem Gasinnendruck-Spritzgiessen mit dem Unterschied, dass statt Gas Wasser über einen sogenannten Injektor in ein Spritzgussbauteil eingeleitet wird. Längere Zeit scheiterte die technische Umsetzung an den anlagen- und betriebstechnischen Schwierigkeiten, die mit dem Medium Wasser verbunden sind (Dichtigkeit, Korrosion). Forschungsvorhaben am Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen zeigten jedoch Wege für die praxisnahe Realisierung des Verfahren auf, so dass dieses Verfahren mittlerweile erfolgreich am Markt etabliert ist.

Vorteile, die sich durch die Verwendung von Wasser ergeben, sind die deutliche Reduzierung der Taktzeit (grössere Wärmekapazität des Wassers im Vergleich zu Stickstoff bei der GIT) und eine Verbesserung der Oberflächenstruktur, was insbesondere für Medienleitungen interessant ist.

Wasser kommt automatisch zum Zuge, wenn die Querschnitte und die Kanallänge in Abhängigkeit vom Material für die Gasinjektionstechnik zu gross werden und wenn bei unverstärkten Kunststoffen eine glatte, geschlossene Oberfläche gefordert ist, z. B. im Sanitärbereich. Im Allgemeinen spielt aber neben dem geringen Verzug die ebenfalls geringere erzielbare Restwanddicke eine zentrale Rolle.[1] Betriebswirtschaftlich gesehen stehen die wesentlich kürzeren Taktzeiten und die nicht anfallenden Gaskosten bei der Auswahl von Wasser im Vordergrund.[1] Bei grossen Stückzahlen kann dies zu einer Reduzierung der Investitionskosten um bis zu 50 % führen (Halbierung der Fertigungslinien aufgrund des Effizienzanstiegs jeder einzelnen Linie).

Auswahl des Verfahrens und kombinierte Gas- und Wasserinjektion[Bearbeiten]
Grundsätzlich haben diese beiden primären Verfahren ihr spezifisches Anwendungsgebiet, wobei dies überwiegend durch die Bauteilanforderung definiert wird. Im Übergangsbereich der Verfahrensauswahl entscheiden im Einzelfall die Gesamtkosten, die zu erwartende Stückzahl oder aber pragmatisch, welche Anlagentechnik bereits vorhanden ist.

Bei manchen Anwendungen reichen die bekannten Standardverfahren der Fluidinjektion nicht mehr aus. Hier steht dann eine wachsende Zahl von Sonderverfahren zur Verfügung, wie beispielsweise die Kombination von Wasser- und Gasinjektion in einem Bauteil. Bereiche mit grösseren Querschnitten (z. B. Griffe) werden mit Fluidinjektionstechnik ausgeformt, zur Schwindungskompe- nsation an Rippen aber simultan Gasinjektionstechnik eingesetzt. Typische Anwendungsfälle sind Verkleidungen mit rückseitigen Rippen und Griffberei-
chen, Türtaschen, Motorrad-, Roller- und Gepäckträger.

Verwendung
Durch das Entfernen nicht benötigten Materials aus dem Bauteilkern und dem nahezu ohne Druckverlust von innen wirkenden Nachdruck durch das Fluid sind neue Designs und eine sonst nicht erreichbare Qualität der Bauteile, insbesondere ihrer Oberfläche, möglich. Die gezielte Hohlraumbildung, die bereits bei der Formteilkonstruktion berücksichtigt werden muss, ermöglicht bei vergleichbarer Steifigkeit der Formteile erhebliche Materialeinsparungen und ergibt dadurch wirtschaftlichere und zugleich leichtere Designvariationen gegenüber dem normalen Spritzgiessen. Zusätzlich ergeben sich kürzere Taktzeiten durch die schnellere Abkühlung durch die Wasser- bzw. Gasinjektion.

Die Verwendungsmöglichkeiten des Verfahrens erstrecken sich nicht nur auf herkömmliche thermoplastische Werkstoffe. Es ist für nahezu alle Formmassen mit Quellflussverhalten anwendbar. Dies trifft auf die meisten Thermoplaste, eine grosse Anzahl Duroplaste und auch viele Elastomere zu.

Besonders geeignete Formteile zur Anwendung des Innendruck-Spritzgiessens
sind z. B. lange, dickwandige Teile, wie Handgriffe oder auch PKW-Türinnen- module. Diese Teile zeichnen sich durch sehr grosse Wandstärken aus. Man ist
so in der Lage, Kunststoffteile mit sehr grossen Wandstärken ohne Einfallstellen
in einem Arbeitsgang herzustellen. Damit ist eine Materialersparnis bis ca. 50 % möglich. Es können sich dabei auch deutlich kürzere Taktzeiten durch kürzere Kühlzeiten aufgrund der geringeren Wandstärken ergeben. Zweiteilige Produkte, die bisher nach dem Spritzvorgang zusammengeklebt oder verschweisst wurden, sind in einem Arbeitsgang herstellbar.

Weitere Vorteile:
• Reduzierung der Schliesskraft (nicht unbedingt)
• Realisierung von langen Fliesswegen
• Bessere Oberfläche im Vergleich zu geschäumten Teilen
• Zum Teil einfachere Werkzeugkonstruktionen

Nachteile:
• Zusätzliche Kosten
• Empirische Ermittlung der Einstellparameter
• Loch am Injektionspunkt
• Festigkeit/Dichtigkeit beim Versiegeln oft ungenügend

Quelle: https://de.wikipedia.org/wiki/Innendruck-Spritzgiessen

Startseite
SuchenSuchen 

 

Branchen-Infos

Firmenporträts
Produkte-Nachrichten
Produktvideos
Firmenvideos
Kunststoff-Guide

 

Messe-Spezials

Fakuma Spezial
K Messe Spezial
Swiss Plastics Spezial

 

Marktplatz

Maschinenbörse
Rohstoffbörse

 

News / Fach-Infos

News-Corner
Messekalender
Messe-News
Handelsnamen-Datenbank
Branchenbericht
Kunststoff-Institute
Kunststoff-Videos

 

Kunststoff Know-how

Kunststoff-Wissen
Spritzgiessverfahren
Verarbeitungsverfahren
Massenkunststoffe
Sonderkunststoffe
Kunststoffsorten
Kunststoff-Lexikon
Kunststoff-Wörterbuch
Fachwörterbuch D/E
Liste Kurzzeichen
Kunststoff-Geschichte

 

Services

Aus- / Weiterbildung
Verbände / Netzwerke
Mediadaten
Über Kunststoff-Deutschl.
Links
Impressum / Kontakt

 

Partner-Webseite

Kunststoff-Schweiz

 

 

Plasmatreat-Banner_Animation

 

 

 

Balken Top


Kunststoff-Deutschland - das Internetportal für die deutsche Kunststoff-Industrie

Rectangle_2

   Mediadaten | Impressum / Kontakt

 

 
Kunststoff-Deutschland Logo

Follow us!

TwitterFacebookGoogle+

Der Titel der Seite wird von NetObjects Fusion generiert